MakeItFrom.com
Menu (ESC)

C82800 Copper vs. ASTM A182 Grade F3V

C82800 copper belongs to the copper alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
74
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
660
Tensile Strength: Yield (Proof), MPa 380 to 1000
470

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 310
470
Melting Completion (Liquidus), °C 930
1470
Melting Onset (Solidus), °C 890
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.8

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
2.3
Embodied Energy, MJ/kg 190
33
Embodied Water, L/kg 310
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
590
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21 to 36
23
Strength to Weight: Bending, points 20 to 28
21
Thermal Diffusivity, mm2/s 36
10
Thermal Shock Resistance, points 23 to 39
19

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0
0.050 to 0.18
Chromium (Cr), % 0 to 0.1
2.8 to 3.2
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
94.4 to 95.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.2 to 0.35
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0