MakeItFrom.com
Menu (ESC)

C82800 Copper vs. ASTM A387 Grade 2 Steel

C82800 copper belongs to the copper alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
470 to 550
Tensile Strength: Yield (Proof), MPa 380 to 1000
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 310
420
Melting Completion (Liquidus), °C 930
1470
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
45
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.3

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
1.6
Embodied Energy, MJ/kg 190
20
Embodied Water, L/kg 310
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
180 to 320
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21 to 36
16 to 20
Strength to Weight: Bending, points 20 to 28
17 to 19
Thermal Diffusivity, mm2/s 36
12
Thermal Shock Resistance, points 23 to 39
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0 to 0.1
0.5 to 0.8
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
97.1 to 98.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.35
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0