MakeItFrom.com
Menu (ESC)

C82800 Copper vs. ASTM A514 Steel

C82800 copper belongs to the copper alloys classification, while ASTM A514 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is ASTM A514 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
18 to 21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
790 to 830
Tensile Strength: Yield (Proof), MPa 380 to 1000
690 to 770

Thermal Properties

Latent Heat of Fusion, J/g 240
250 to 260
Maximum Temperature: Mechanical, °C 310
400 to 440
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
37 to 51
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
7.2 to 7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.3 to 8.8

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8 to 7.9
Embodied Carbon, kg CO2/kg material 12
1.6 to 1.8
Embodied Energy, MJ/kg 190
21 to 25
Embodied Water, L/kg 310
48 to 57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
140 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
1280 to 1590
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21 to 36
28 to 29
Strength to Weight: Bending, points 20 to 28
24 to 25
Thermal Diffusivity, mm2/s 36
10 to 14
Thermal Shock Resistance, points 23 to 39
23 to 24