MakeItFrom.com
Menu (ESC)

C82800 Copper vs. AWS E310Mo

C82800 copper belongs to the copper alloys classification, while AWS E310Mo belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is AWS E310Mo.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
34
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 46
80
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
620

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Melting Completion (Liquidus), °C 930
1420
Melting Onset (Solidus), °C 890
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
14
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.4

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
5.1
Embodied Energy, MJ/kg 190
71
Embodied Water, L/kg 310
210

Common Calculations

Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
22
Strength to Weight: Bending, points 20 to 28
20
Thermal Diffusivity, mm2/s 36
3.7
Thermal Shock Resistance, points 23 to 39
15

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
25 to 28
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0 to 0.75
Iron (Fe), % 0 to 0.25
42.8 to 52
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
1.0 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.2
20 to 22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.35
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0