MakeItFrom.com
Menu (ESC)

C82800 Copper vs. C355.0 Aluminum

C82800 copper belongs to the copper alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C82800 copper and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 1.0 to 20
2.7 to 3.8
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 46
26
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
290 to 310
Tensile Strength: Yield (Proof), MPa 380 to 1000
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 240
470
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 930
620
Melting Onset (Solidus), °C 890
570
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
39
Electrical Conductivity: Equal Weight (Specific), % IACS 19
130

Otherwise Unclassified Properties

Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
8.0
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 310
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
290 to 380
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 21 to 36
30 to 32
Strength to Weight: Bending, points 20 to 28
36 to 37
Thermal Diffusivity, mm2/s 36
60
Thermal Shock Resistance, points 23 to 39
13 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.15
91.7 to 94.1
Beryllium (Be), % 2.5 to 2.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
1.0 to 1.5
Iron (Fe), % 0 to 0.25
0 to 0.2
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0.2 to 0.35
4.5 to 5.5
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15