MakeItFrom.com
Menu (ESC)

C82800 Copper vs. EN 1.4003 Stainless Steel

C82800 copper belongs to the copper alloys classification, while EN 1.4003 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is EN 1.4003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
22
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
540
Tensile Strength: Yield (Proof), MPa 380 to 1000
320

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 310
720
Melting Completion (Liquidus), °C 930
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 19
3.3

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
1.9
Embodied Energy, MJ/kg 190
27
Embodied Water, L/kg 310
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
260
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
19
Strength to Weight: Bending, points 20 to 28
19
Thermal Diffusivity, mm2/s 36
6.7
Thermal Shock Resistance, points 23 to 39
19

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
10.5 to 12.5
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
83.9 to 89.2
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.2
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0