MakeItFrom.com
Menu (ESC)

C82800 Copper vs. EN 1.4415 Stainless Steel

C82800 copper belongs to the copper alloys classification, while EN 1.4415 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is EN 1.4415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
17 to 20
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
830 to 930
Tensile Strength: Yield (Proof), MPa 380 to 1000
730 to 840

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 310
790
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
19
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.8

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
3.6
Embodied Energy, MJ/kg 190
51
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
1350 to 1790
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
29 to 33
Strength to Weight: Bending, points 20 to 28
25 to 27
Thermal Diffusivity, mm2/s 36
5.1
Thermal Shock Resistance, points 23 to 39
30 to 34

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
11.5 to 13.5
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
75.9 to 82.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0 to 0.2
4.5 to 6.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0 to 0.010
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0

Comparable Variants