MakeItFrom.com
Menu (ESC)

C82800 Copper vs. EN 1.4568 Stainless Steel

C82800 copper belongs to the copper alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
2.3 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
830 to 1620
Tensile Strength: Yield (Proof), MPa 380 to 1000
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 310
890
Melting Completion (Liquidus), °C 930
1420
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.5

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 12
2.8
Embodied Energy, MJ/kg 190
40
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
290 to 5710
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
30 to 58
Strength to Weight: Bending, points 20 to 28
25 to 40
Thermal Diffusivity, mm2/s 36
4.3
Thermal Shock Resistance, points 23 to 39
23 to 46

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.7 to 1.5
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0 to 0.1
16 to 18
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
70.9 to 76.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.2
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0