MakeItFrom.com
Menu (ESC)

C82800 Copper vs. EN 1.4618 Stainless Steel

C82800 copper belongs to the copper alloys classification, while EN 1.4618 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is EN 1.4618 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
51
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
680 to 700
Tensile Strength: Yield (Proof), MPa 380 to 1000
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 310
900
Melting Completion (Liquidus), °C 930
1400
Melting Onset (Solidus), °C 890
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 12
2.7
Embodied Energy, MJ/kg 190
39
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
270 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
160 to 170
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
24 to 25
Strength to Weight: Bending, points 20 to 28
22 to 23
Thermal Diffusivity, mm2/s 36
4.0
Thermal Shock Resistance, points 23 to 39
15 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
16.5 to 18.5
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
1.0 to 2.5
Iron (Fe), % 0 to 0.25
62.7 to 72.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
5.5 to 9.5
Nickel (Ni), % 0 to 0.2
4.5 to 5.5
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0
0 to 0.070
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0