MakeItFrom.com
Menu (ESC)

C82800 Copper vs. EN 1.7711 Steel

C82800 copper belongs to the copper alloys classification, while EN 1.7711 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is EN 1.7711 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
16 to 22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
690 to 930
Tensile Strength: Yield (Proof), MPa 380 to 1000
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 310
430
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
33
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.5

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
2.3
Embodied Energy, MJ/kg 190
32
Embodied Water, L/kg 310
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
130 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
430 to 1690
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21 to 36
24 to 33
Strength to Weight: Bending, points 20 to 28
22 to 27
Thermal Diffusivity, mm2/s 36
8.9
Thermal Shock Resistance, points 23 to 39
24 to 32

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.015
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0.36 to 0.44
Chromium (Cr), % 0 to 0.1
0.9 to 1.2
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
96 to 97.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.45 to 0.85
Molybdenum (Mo), % 0
0.5 to 0.65
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.35
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0