MakeItFrom.com
Menu (ESC)

C82800 Copper vs. EN 2.4815 Cast Nickel

C82800 copper belongs to the copper alloys classification, while EN 2.4815 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is EN 2.4815 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
3.4
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
74
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
460
Tensile Strength: Yield (Proof), MPa 380 to 1000
220

Thermal Properties

Latent Heat of Fusion, J/g 240
330
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 930
1510
Melting Onset (Solidus), °C 890
1450
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 19
3.4

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 12
7.9
Embodied Energy, MJ/kg 190
110
Embodied Water, L/kg 310
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
13
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
130
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 21 to 36
15
Strength to Weight: Bending, points 20 to 28
16
Thermal Diffusivity, mm2/s 36
6.4
Thermal Shock Resistance, points 23 to 39
17

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0 to 0.1
12 to 18
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
9.8 to 28.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.2
58 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0