MakeItFrom.com
Menu (ESC)

C82800 Copper vs. CC498K Bronze

Both C82800 copper and CC498K bronze are copper alloys. They have 88% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is CC498K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
14
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 46
41
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
260
Tensile Strength: Yield (Proof), MPa 380 to 1000
130

Thermal Properties

Latent Heat of Fusion, J/g 240
190
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 930
1000
Melting Onset (Solidus), °C 890
920
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 120
73
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
10
Electrical Conductivity: Equal Weight (Specific), % IACS 19
10

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 12
3.2
Embodied Energy, MJ/kg 190
52
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
30
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
72
Stiffness to Weight: Axial, points 7.8
6.9
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 21 to 36
8.1
Strength to Weight: Bending, points 20 to 28
10
Thermal Diffusivity, mm2/s 36
22
Thermal Shock Resistance, points 23 to 39
9.3

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Beryllium (Be), % 2.5 to 2.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
85 to 90
Iron (Fe), % 0 to 0.25
0 to 0.25
Lead (Pb), % 0 to 0.020
1.0 to 2.0
Nickel (Ni), % 0 to 0.2
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.2 to 0.35
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0 to 0.1
5.5 to 6.5
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
3.0 to 5.0
Residuals, % 0 to 0.5
0