MakeItFrom.com
Menu (ESC)

C82800 Copper vs. SAE-AISI 1078 Steel

C82800 copper belongs to the copper alloys classification, while SAE-AISI 1078 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is SAE-AISI 1078 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
11 to 14
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
72
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
730 to 780
Tensile Strength: Yield (Proof), MPa 380 to 1000
430 to 570

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
49
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.1

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
1.4
Embodied Energy, MJ/kg 190
18
Embodied Water, L/kg 310
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
77 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
490 to 860
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21 to 36
26 to 28
Strength to Weight: Bending, points 20 to 28
23 to 24
Thermal Diffusivity, mm2/s 36
13
Thermal Shock Resistance, points 23 to 39
25 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0.72 to 0.85
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
98.5 to 99
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.3 to 0.6
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0