MakeItFrom.com
Menu (ESC)

C82800 Copper vs. C18700 Copper

Both C82800 copper and C18700 copper are copper alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
9.0 to 9.6
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 46
43
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
290 to 330
Tensile Strength: Yield (Proof), MPa 380 to 1000
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 240
210
Maximum Temperature: Mechanical, °C 310
200
Melting Completion (Liquidus), °C 930
1080
Melting Onset (Solidus), °C 890
950
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 120
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
98
Electrical Conductivity: Equal Weight (Specific), % IACS 19
99

Otherwise Unclassified Properties

Density, g/cm3 8.7
9.0
Embodied Carbon, kg CO2/kg material 12
2.6
Embodied Energy, MJ/kg 190
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
240 to 280
Stiffness to Weight: Axial, points 7.8
7.1
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 21 to 36
9.0 to 10
Strength to Weight: Bending, points 20 to 28
11 to 12
Thermal Diffusivity, mm2/s 36
110
Thermal Shock Resistance, points 23 to 39
10 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
98 to 99.2
Iron (Fe), % 0 to 0.25
0
Lead (Pb), % 0 to 0.020
0.8 to 1.5
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0.2 to 0.35
0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5