MakeItFrom.com
Menu (ESC)

C82800 Copper vs. C60800 Bronze

Both C82800 copper and C60800 bronze are copper alloys. They have a moderately high 94% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is C60800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
55
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 46
46
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
390
Tensile Strength: Yield (Proof), MPa 380 to 1000
150

Thermal Properties

Latent Heat of Fusion, J/g 240
220
Maximum Temperature: Mechanical, °C 310
210
Melting Completion (Liquidus), °C 930
1060
Melting Onset (Solidus), °C 890
1050
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 120
80
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
17
Electrical Conductivity: Equal Weight (Specific), % IACS 19
18

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.6
Embodied Carbon, kg CO2/kg material 12
2.9
Embodied Energy, MJ/kg 190
48
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
94
Stiffness to Weight: Axial, points 7.8
7.3
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 21 to 36
13
Strength to Weight: Bending, points 20 to 28
14
Thermal Diffusivity, mm2/s 36
23
Thermal Shock Resistance, points 23 to 39
14

Alloy Composition

Aluminum (Al), % 0 to 0.15
5.0 to 6.5
Arsenic (As), % 0
0.020 to 0.35
Beryllium (Be), % 2.5 to 2.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
92.5 to 95
Iron (Fe), % 0 to 0.25
0 to 0.1
Lead (Pb), % 0 to 0.020
0 to 0.1
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0.2 to 0.35
0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5