MakeItFrom.com
Menu (ESC)

C82800 Copper vs. C61800 Bronze

Both C82800 copper and C61800 bronze are copper alloys. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
26
Poisson's Ratio 0.33
0.34
Rockwell B Hardness 45 to 85
89
Shear Modulus, GPa 46
44
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
740
Tensile Strength: Yield (Proof), MPa 380 to 1000
310

Thermal Properties

Latent Heat of Fusion, J/g 240
230
Maximum Temperature: Mechanical, °C 310
220
Melting Completion (Liquidus), °C 930
1050
Melting Onset (Solidus), °C 890
1040
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 120
64
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
13
Electrical Conductivity: Equal Weight (Specific), % IACS 19
14

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 12
3.1
Embodied Energy, MJ/kg 190
52
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
420
Stiffness to Weight: Axial, points 7.8
7.5
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 21 to 36
25
Strength to Weight: Bending, points 20 to 28
22
Thermal Diffusivity, mm2/s 36
18
Thermal Shock Resistance, points 23 to 39
26

Alloy Composition

Aluminum (Al), % 0 to 0.15
8.5 to 11
Beryllium (Be), % 2.5 to 2.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
86.9 to 91
Iron (Fe), % 0 to 0.25
0.5 to 1.5
Lead (Pb), % 0 to 0.020
0 to 0.020
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0.2 to 0.35
0 to 0.1
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0 to 0.020
Residuals, % 0
0 to 0.5