MakeItFrom.com
Menu (ESC)

C82800 Copper vs. N07716 Nickel

C82800 copper belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
78
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
860
Tensile Strength: Yield (Proof), MPa 380 to 1000
350

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Maximum Temperature: Mechanical, °C 310
980
Melting Completion (Liquidus), °C 930
1480
Melting Onset (Solidus), °C 890
1430
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 19
1.5

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.5
Embodied Carbon, kg CO2/kg material 12
13
Embodied Energy, MJ/kg 190
190
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
240
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
300
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 21 to 36
28
Strength to Weight: Bending, points 20 to 28
24
Thermal Diffusivity, mm2/s 36
2.8
Thermal Shock Resistance, points 23 to 39
24

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.35
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19 to 22
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
0 to 11.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0 to 0.2
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.2 to 0.35
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
1.0 to 1.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0