MakeItFrom.com
Menu (ESC)

C82800 Copper vs. N08120 Nickel

C82800 copper belongs to the copper alloys classification, while N08120 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
79
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
700
Tensile Strength: Yield (Proof), MPa 380 to 1000
310

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 310
1000
Melting Completion (Liquidus), °C 930
1420
Melting Onset (Solidus), °C 890
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 12
7.2
Embodied Energy, MJ/kg 190
100
Embodied Water, L/kg 310
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
190
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
240
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21 to 36
24
Strength to Weight: Bending, points 20 to 28
21
Thermal Diffusivity, mm2/s 36
3.0
Thermal Shock Resistance, points 23 to 39
17

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.4
Beryllium (Be), % 2.5 to 2.9
0
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.1
23 to 27
Cobalt (Co), % 0.15 to 0.7
0 to 3.0
Copper (Cu), % 94.6 to 97.2
0 to 0.5
Iron (Fe), % 0 to 0.25
21 to 41.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0 to 0.2
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0