MakeItFrom.com
Menu (ESC)

C82800 Copper vs. N08801 Stainless Steel

C82800 copper belongs to the copper alloys classification, while N08801 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is N08801 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
860
Tensile Strength: Yield (Proof), MPa 380 to 1000
190

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 310
1090
Melting Completion (Liquidus), °C 930
1390
Melting Onset (Solidus), °C 890
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 19
1.9

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 12
5.5
Embodied Energy, MJ/kg 190
79
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
92
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21 to 36
30
Strength to Weight: Bending, points 20 to 28
25
Thermal Diffusivity, mm2/s 36
3.3
Thermal Shock Resistance, points 23 to 39
20

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
19 to 22
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0 to 0.5
Iron (Fe), % 0 to 0.25
39.5 to 50.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.2
30 to 34
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0.75 to 1.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0