MakeItFrom.com
Menu (ESC)

C82800 Copper vs. N08904 Stainless Steel

C82800 copper belongs to the copper alloys classification, while N08904 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is N08904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
38
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 45 to 85
77
Shear Modulus, GPa 46
79
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
540
Tensile Strength: Yield (Proof), MPa 380 to 1000
240

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 930
1440
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 19
1.9

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 12
5.8
Embodied Energy, MJ/kg 190
79
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
150
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21 to 36
19
Strength to Weight: Bending, points 20 to 28
18
Thermal Diffusivity, mm2/s 36
3.1
Thermal Shock Resistance, points 23 to 39
12

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.1
19 to 23
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
1.0 to 2.0
Iron (Fe), % 0 to 0.25
38.8 to 53
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.2
23 to 28
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0