MakeItFrom.com
Menu (ESC)

C82800 Copper vs. S13800 Stainless Steel

C82800 copper belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
11 to 18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
980 to 1730
Tensile Strength: Yield (Proof), MPa 380 to 1000
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 310
810
Melting Completion (Liquidus), °C 930
1450
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.6

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
3.4
Embodied Energy, MJ/kg 190
46
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
1090 to 5490
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
35 to 61
Strength to Weight: Bending, points 20 to 28
28 to 41
Thermal Diffusivity, mm2/s 36
4.3
Thermal Shock Resistance, points 23 to 39
33 to 58

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.9 to 1.4
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
12.3 to 13.2
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
73.6 to 77.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.2
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.2 to 0.35
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0