MakeItFrom.com
Menu (ESC)

C82800 Copper vs. S64512 Stainless Steel

C82800 copper belongs to the copper alloys classification, while S64512 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
1140
Tensile Strength: Yield (Proof), MPa 380 to 1000
890

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 310
750
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
28
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 19
4.1

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
3.3
Embodied Energy, MJ/kg 190
47
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
180
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
2020
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
40
Strength to Weight: Bending, points 20 to 28
31
Thermal Diffusivity, mm2/s 36
7.5
Thermal Shock Resistance, points 23 to 39
42

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0 to 0.1
11 to 12.5
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
80.6 to 84.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.5 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.2
2.0 to 3.0
Nitrogen (N), % 0
0.010 to 0.050
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.35
0 to 0.35
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0