MakeItFrom.com
Menu (ESC)

C83300 Brass vs. ASTM A387 Grade 2 Steel

C83300 brass belongs to the copper alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C83300 brass and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35
140 to 170
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 35
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 220
470 to 550
Tensile Strength: Yield (Proof), MPa 69
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 1060
1470
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
45
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 33
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.6
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 44
20
Embodied Water, L/kg 320
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 21
180 to 320
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.9
16 to 20
Strength to Weight: Bending, points 9.2
17 to 19
Thermal Diffusivity, mm2/s 48
12
Thermal Shock Resistance, points 7.9
14 to 16

Alloy Composition

Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 92 to 94
0
Iron (Fe), % 0
97.1 to 98.3
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 1.0 to 2.0
0
Zinc (Zn), % 2.0 to 6.0
0
Residuals, % 0 to 0.7
0