MakeItFrom.com
Menu (ESC)

C83300 Brass vs. ASTM A514 Steel

C83300 brass belongs to the copper alloys classification, while ASTM A514 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C83300 brass and the bottom bar is ASTM A514 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35
240 to 250
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 35
18 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 220
790 to 830
Tensile Strength: Yield (Proof), MPa 69
690 to 770

Thermal Properties

Latent Heat of Fusion, J/g 200
250 to 260
Maximum Temperature: Mechanical, °C 180
400 to 440
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
37 to 51
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.2 to 7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 33
8.3 to 8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.3 to 3.8
Density, g/cm3 8.8
7.8 to 7.9
Embodied Carbon, kg CO2/kg material 2.7
1.6 to 1.8
Embodied Energy, MJ/kg 44
21 to 25
Embodied Water, L/kg 320
48 to 57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
140 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 21
1280 to 1590
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.9
28 to 29
Strength to Weight: Bending, points 9.2
24 to 25
Thermal Diffusivity, mm2/s 48
10 to 14
Thermal Shock Resistance, points 7.9
23 to 24