MakeItFrom.com
Menu (ESC)

C83300 Brass vs. EN 1.4421 Stainless Steel

C83300 brass belongs to the copper alloys classification, while EN 1.4421 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C83300 brass and the bottom bar is EN 1.4421 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 35
11 to 17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 220
880 to 1100
Tensile Strength: Yield (Proof), MPa 69
620 to 950

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 33
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
12
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 44
36
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
120 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 21
960 to 2270
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.9
31 to 39
Strength to Weight: Bending, points 9.2
26 to 30
Thermal Diffusivity, mm2/s 48
4.4
Thermal Shock Resistance, points 7.9
31 to 39

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 92 to 94
0
Iron (Fe), % 0
74.4 to 80.5
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
4.0 to 5.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 1.0 to 2.0
0
Zinc (Zn), % 2.0 to 6.0
0
Residuals, % 0 to 0.7
0