MakeItFrom.com
Menu (ESC)

C83300 Brass vs. SAE-AISI 1022 Steel

C83300 brass belongs to the copper alloys classification, while SAE-AISI 1022 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C83300 brass and the bottom bar is SAE-AISI 1022 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35
150 to 160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 35
17 to 26
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 220
480 to 550
Tensile Strength: Yield (Proof), MPa 69
260 to 450

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
52
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 33
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 44
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 21
190 to 530
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.9
17 to 19
Strength to Weight: Bending, points 9.2
17 to 19
Thermal Diffusivity, mm2/s 48
14
Thermal Shock Resistance, points 7.9
15 to 17

Alloy Composition

Carbon (C), % 0
0.18 to 0.23
Copper (Cu), % 92 to 94
0
Iron (Fe), % 0
98.7 to 99.12
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.0 to 2.0
0
Zinc (Zn), % 2.0 to 6.0
0
Residuals, % 0 to 0.7
0