MakeItFrom.com
Menu (ESC)

C83300 Brass vs. K93603 Alloy

C83300 brass belongs to the copper alloys classification, while K93603 alloy belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C83300 brass and the bottom bar is K93603 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 42
72
Tensile Strength: Ultimate (UTS), MPa 220
490 to 810

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Melting Completion (Liquidus), °C 1060
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 380
460
Thermal Expansion, µm/m-K 18
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
25
Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 2.7
4.8
Embodied Energy, MJ/kg 44
66
Embodied Water, L/kg 320
120

Common Calculations

Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 6.9
17 to 27
Strength to Weight: Bending, points 9.2
17 to 24
Thermal Shock Resistance, points 7.9
15 to 25

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 92 to 94
0
Iron (Fe), % 0
61.8 to 64
Lead (Pb), % 1.0 to 2.0
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.6
Nickel (Ni), % 0
36
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.0 to 2.0
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 2.0 to 6.0
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.7
0