MakeItFrom.com
Menu (ESC)

C83300 Brass vs. N08810 Stainless Steel

C83300 brass belongs to the copper alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C83300 brass and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 35
33
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 220
520
Tensile Strength: Yield (Proof), MPa 69
200

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1060
1400
Melting Onset (Solidus), °C 1030
1350
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 33
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
30
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.3
Embodied Energy, MJ/kg 44
76
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
140
Resilience: Unit (Modulus of Resilience), kJ/m3 21
100
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.9
18
Strength to Weight: Bending, points 9.2
18
Thermal Diffusivity, mm2/s 48
3.0
Thermal Shock Resistance, points 7.9
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 92 to 94
0 to 0.75
Iron (Fe), % 0
39.5 to 50.7
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
30 to 35
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.0 to 2.0
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 2.0 to 6.0
0
Residuals, % 0 to 0.7
0