MakeItFrom.com
Menu (ESC)

C83400 Brass vs. C95820 Bronze

Both C83400 brass and C95820 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 81% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C83400 brass and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 30
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
44
Tensile Strength: Ultimate (UTS), MPa 240
730
Tensile Strength: Yield (Proof), MPa 69
310

Thermal Properties

Latent Heat of Fusion, J/g 200
230
Maximum Temperature: Mechanical, °C 180
230
Melting Completion (Liquidus), °C 1040
1080
Melting Onset (Solidus), °C 1020
1020
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 190
38
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 46
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
29
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.5
Embodied Energy, MJ/kg 43
56
Embodied Water, L/kg 320
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
86
Resilience: Unit (Modulus of Resilience), kJ/m3 21
400
Stiffness to Weight: Axial, points 7.2
8.0
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 7.7
24
Strength to Weight: Bending, points 9.9
22
Thermal Diffusivity, mm2/s 57
11
Thermal Shock Resistance, points 8.4
25

Alloy Composition

Aluminum (Al), % 0 to 0.0050
9.0 to 10
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 88 to 92
77.5 to 82.5
Iron (Fe), % 0 to 0.25
4.0 to 5.0
Lead (Pb), % 0 to 0.5
0 to 0.020
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 1.0
4.5 to 5.8
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.0050
0 to 0.1
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 0 to 0.2
0 to 0.020
Zinc (Zn), % 8.0 to 12
0 to 0.2
Residuals, % 0
0 to 0.8