MakeItFrom.com
Menu (ESC)

C83600 Ounce Metal vs. ASTM Grade HG10 MNN Steel

C83600 ounce metal belongs to the copper alloys classification, while ASTM grade HG10 MNN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C83600 ounce metal and the bottom bar is ASTM grade HG10 MNN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
77
Tensile Strength: Ultimate (UTS), MPa 250
590
Tensile Strength: Yield (Proof), MPa 120
250

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 1010
1420
Melting Onset (Solidus), °C 850
1370
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 72
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 15
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
21
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.1
4.0
Embodied Energy, MJ/kg 50
58
Embodied Water, L/kg 350
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43
110
Resilience: Unit (Modulus of Resilience), kJ/m3 70
160
Stiffness to Weight: Axial, points 6.7
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.9
21
Strength to Weight: Bending, points 10
20
Thermal Diffusivity, mm2/s 22
3.9
Thermal Shock Resistance, points 9.3
13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0
18.5 to 20.5
Copper (Cu), % 84 to 86
0 to 0.5
Iron (Fe), % 0 to 0.3
57.9 to 66.5
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0
3.0 to 5.0
Molybdenum (Mo), % 0
0.25 to 0.45
Nickel (Ni), % 0 to 1.0
11.5 to 13.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.7
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 4.0 to 6.0
0
Residuals, % 0 to 0.7
0