MakeItFrom.com
Menu (ESC)

C83600 Ounce Metal vs. S32053 Stainless Steel

C83600 ounce metal belongs to the copper alloys classification, while S32053 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C83600 ounce metal and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 21
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
80
Tensile Strength: Ultimate (UTS), MPa 250
730
Tensile Strength: Yield (Proof), MPa 120
330

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 1010
1450
Melting Onset (Solidus), °C 850
1400
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 72
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 15
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 3.1
6.1
Embodied Energy, MJ/kg 50
83
Embodied Water, L/kg 350
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43
270
Resilience: Unit (Modulus of Resilience), kJ/m3 70
270
Stiffness to Weight: Axial, points 6.7
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.9
25
Strength to Weight: Bending, points 10
22
Thermal Diffusivity, mm2/s 22
3.3
Thermal Shock Resistance, points 9.3
16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 84 to 86
0
Iron (Fe), % 0 to 0.3
41.7 to 48.8
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 0 to 1.0
24 to 26
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 4.0 to 6.0
0
Residuals, % 0 to 0.7
0