MakeItFrom.com
Menu (ESC)

C83800 Bronze vs. EN 1.3553 Steel

C83800 bronze belongs to the copper alloys classification, while EN 1.3553 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C83800 bronze and the bottom bar is EN 1.3553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 39
77
Tensile Strength: Ultimate (UTS), MPa 230
720

Thermal Properties

Latent Heat of Fusion, J/g 180
260
Maximum Temperature: Mechanical, °C 160
540
Melting Completion (Liquidus), °C 1000
1620
Melting Onset (Solidus), °C 840
1570
Specific Heat Capacity, J/kg-K 370
440
Thermal Conductivity, W/m-K 72
24
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
10
Electrical Conductivity: Equal Weight (Specific), % IACS 15
11

Otherwise Unclassified Properties

Base Metal Price, % relative 30
24
Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 2.9
8.5
Embodied Energy, MJ/kg 47
130
Embodied Water, L/kg 340
96

Common Calculations

Stiffness to Weight: Axial, points 6.6
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 7.4
24
Strength to Weight: Bending, points 9.6
21
Thermal Diffusivity, mm2/s 22
6.4
Thermal Shock Resistance, points 8.6
21

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.78 to 0.86
Chromium (Cr), % 0
3.9 to 4.3
Copper (Cu), % 82 to 83.8
0 to 0.3
Iron (Fe), % 0 to 0.3
80.7 to 83.7
Lead (Pb), % 5.0 to 7.0
0
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 0
4.7 to 5.2
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.4
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 3.3 to 4.2
0
Tungsten (W), % 0
6.0 to 6.7
Vanadium (V), % 0
1.7 to 2.0
Zinc (Zn), % 5.0 to 8.0
0
Residuals, % 0 to 0.7
0