MakeItFrom.com
Menu (ESC)

C83800 Bronze vs. EN 1.4835 Stainless Steel

C83800 bronze belongs to the copper alloys classification, while EN 1.4835 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C83800 bronze and the bottom bar is EN 1.4835 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20
43
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
77
Tensile Strength: Ultimate (UTS), MPa 230
750
Tensile Strength: Yield (Proof), MPa 110
350

Thermal Properties

Latent Heat of Fusion, J/g 180
320
Maximum Temperature: Mechanical, °C 160
1150
Melting Completion (Liquidus), °C 1000
1400
Melting Onset (Solidus), °C 840
1360
Specific Heat Capacity, J/kg-K 370
490
Thermal Conductivity, W/m-K 72
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 15
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
17
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 2.9
3.3
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 340
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
270
Resilience: Unit (Modulus of Resilience), kJ/m3 53
310
Stiffness to Weight: Axial, points 6.6
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.4
27
Strength to Weight: Bending, points 9.6
24
Thermal Diffusivity, mm2/s 22
4.0
Thermal Shock Resistance, points 8.6
16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 82 to 83.8
0
Iron (Fe), % 0 to 0.3
62 to 68.4
Lead (Pb), % 5.0 to 7.0
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
10 to 12
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
1.4 to 2.5
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 3.3 to 4.2
0
Zinc (Zn), % 5.0 to 8.0
0
Residuals, % 0 to 0.7
0