MakeItFrom.com
Menu (ESC)

C84000 Brass vs. EN 1.4541 Stainless Steel

C84000 brass belongs to the copper alloys classification, while EN 1.4541 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C84000 brass and the bottom bar is EN 1.4541 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
190 to 270
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 27
14 to 40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 250
600 to 900
Tensile Strength: Yield (Proof), MPa 140
220 to 570

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 940
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 72
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
16
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.2
Embodied Energy, MJ/kg 49
46
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 83
120 to 830
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.2
21 to 32
Strength to Weight: Bending, points 10
20 to 27
Thermal Diffusivity, mm2/s 22
4.0
Thermal Shock Resistance, points 9.0
14 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.020
0
Boron (B), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 82 to 89
0
Iron (Fe), % 0 to 0.4
65.2 to 74
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 2.0
Nickel (Ni), % 0.5 to 2.0
9.0 to 12
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0.1 to 0.65
0 to 0.015
Tin (Sn), % 2.0 to 4.0
0
Titanium (Ti), % 0
0 to 0.7
Zinc (Zn), % 5.0 to 14
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.7
0