MakeItFrom.com
Menu (ESC)

C84100 Brass vs. AISI 415 Stainless Steel

C84100 brass belongs to the copper alloys classification, while AISI 415 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C84100 brass and the bottom bar is AISI 415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
260
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 39
76
Tensile Strength: Ultimate (UTS), MPa 230
900
Tensile Strength: Yield (Proof), MPa 81
700

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 160
780
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 810
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
24
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 25
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
11
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.5
Embodied Energy, MJ/kg 48
35
Embodied Water, L/kg 340
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
140
Resilience: Unit (Modulus of Resilience), kJ/m3 30
1250
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 7.4
32
Strength to Weight: Bending, points 9.7
26
Thermal Diffusivity, mm2/s 33
6.4
Thermal Shock Resistance, points 7.8
33

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.050
0
Bismuth (Bi), % 0 to 0.090
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 78 to 85
0
Iron (Fe), % 0 to 0.3
77.8 to 84
Lead (Pb), % 0.050 to 0.25
0
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0 to 0.5
3.5 to 5.5
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.010
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 4.5
0
Zinc (Zn), % 12 to 20
0
Residuals, % 0 to 0.5
0