MakeItFrom.com
Menu (ESC)

C84100 Brass vs. S32053 Stainless Steel

C84100 brass belongs to the copper alloys classification, while S32053 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C84100 brass and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
190
Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 13
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 39
80
Tensile Strength: Ultimate (UTS), MPa 230
730
Tensile Strength: Yield (Proof), MPa 81
330

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 810
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 25
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
33
Density, g/cm3 8.5
8.1
Embodied Carbon, kg CO2/kg material 2.9
6.1
Embodied Energy, MJ/kg 48
83
Embodied Water, L/kg 340
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
270
Resilience: Unit (Modulus of Resilience), kJ/m3 30
270
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 7.4
25
Strength to Weight: Bending, points 9.7
22
Thermal Diffusivity, mm2/s 33
3.3
Thermal Shock Resistance, points 7.8
16

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.050
0
Bismuth (Bi), % 0 to 0.090
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 78 to 85
0
Iron (Fe), % 0 to 0.3
41.7 to 48.8
Lead (Pb), % 0.050 to 0.25
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 0 to 0.5
24 to 26
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 1.5 to 4.5
0
Zinc (Zn), % 12 to 20
0
Residuals, % 0 to 0.5
0