MakeItFrom.com
Menu (ESC)

C84200 Brass vs. 6262A Aluminum

C84200 brass belongs to the copper alloys classification, while 6262A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C84200 brass and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 15
4.5 to 11
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 250
310 to 410
Tensile Strength: Yield (Proof), MPa 120
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 180
400
Maximum Temperature: Mechanical, °C 150
160
Melting Completion (Liquidus), °C 990
640
Melting Onset (Solidus), °C 840
580
Specific Heat Capacity, J/kg-K 370
890
Thermal Conductivity, W/m-K 72
170
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
45
Electrical Conductivity: Equal Weight (Specific), % IACS 17
140

Otherwise Unclassified Properties

Base Metal Price, % relative 30
11
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 3.1
8.4
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 350
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 72
540 to 1000
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
49
Strength to Weight: Axial, points 8.2
31 to 41
Strength to Weight: Bending, points 10
36 to 44
Thermal Diffusivity, mm2/s 23
67
Thermal Shock Resistance, points 9.1
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.0050
94.2 to 97.8
Antimony (Sb), % 0 to 0.25
0
Bismuth (Bi), % 0
0.4 to 0.9
Chromium (Cr), % 0
0.040 to 0.14
Copper (Cu), % 78 to 82
0.15 to 0.4
Iron (Fe), % 0 to 0.4
0 to 0.7
Lead (Pb), % 2.0 to 3.0
0
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0 to 0.8
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0.4 to 0.8
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 4.0 to 6.0
0.4 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 10 to 16
0 to 0.25
Residuals, % 0
0 to 0.15