MakeItFrom.com
Menu (ESC)

C84200 Brass vs. AWS E320LR

C84200 brass belongs to the copper alloys classification, while AWS E320LR belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C84200 brass and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 15
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 250
580

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Melting Completion (Liquidus), °C 990
1410
Melting Onset (Solidus), °C 840
1360
Specific Heat Capacity, J/kg-K 370
460
Thermal Expansion, µm/m-K 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 30
36
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 3.1
6.2
Embodied Energy, MJ/kg 51
87
Embodied Water, L/kg 350
220

Common Calculations

Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.2
20
Strength to Weight: Bending, points 10
19
Thermal Shock Resistance, points 9.1
15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 78 to 82
3.0 to 4.0
Iron (Fe), % 0 to 0.4
32.7 to 42.5
Lead (Pb), % 2.0 to 3.0
0
Manganese (Mn), % 0
1.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.8
32 to 36
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0 to 1.5
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 0.3
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 10 to 16
0
Residuals, % 0 to 0.7
0