MakeItFrom.com
Menu (ESC)

C84200 Brass vs. Grade Ti-Pd17 Titanium

C84200 brass belongs to the copper alloys classification, while grade Ti-Pd17 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C84200 brass and the bottom bar is grade Ti-Pd17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 15
22
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 250
270
Tensile Strength: Yield (Proof), MPa 120
190

Thermal Properties

Latent Heat of Fusion, J/g 180
420
Maximum Temperature: Mechanical, °C 150
320
Melting Completion (Liquidus), °C 990
1660
Melting Onset (Solidus), °C 840
1610
Specific Heat Capacity, J/kg-K 370
540
Thermal Conductivity, W/m-K 72
21
Thermal Expansion, µm/m-K 19
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 17
7.1

Otherwise Unclassified Properties

Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 3.1
36
Embodied Energy, MJ/kg 51
600
Embodied Water, L/kg 350
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
55
Resilience: Unit (Modulus of Resilience), kJ/m3 72
180
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 8.2
17
Strength to Weight: Bending, points 10
21
Thermal Diffusivity, mm2/s 23
8.8
Thermal Shock Resistance, points 9.1
21

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 78 to 82
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.2
Lead (Pb), % 2.0 to 3.0
0
Nickel (Ni), % 0 to 0.8
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 4.0 to 6.0
0
Titanium (Ti), % 0
98.9 to 99.96
Zinc (Zn), % 10 to 16
0
Residuals, % 0
0 to 0.4