MakeItFrom.com
Menu (ESC)

C84200 Brass vs. R56401 Titanium

C84200 brass belongs to the copper alloys classification, while R56401 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C84200 brass and the bottom bar is R56401 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 15
9.1
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 250
940
Tensile Strength: Yield (Proof), MPa 120
850

Thermal Properties

Latent Heat of Fusion, J/g 180
410
Maximum Temperature: Mechanical, °C 150
340
Melting Completion (Liquidus), °C 990
1610
Melting Onset (Solidus), °C 840
1560
Specific Heat Capacity, J/kg-K 370
560
Thermal Conductivity, W/m-K 72
7.1
Thermal Expansion, µm/m-K 19
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
36
Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 3.1
38
Embodied Energy, MJ/kg 51
610
Embodied Water, L/kg 350
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
83
Resilience: Unit (Modulus of Resilience), kJ/m3 72
3440
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 8.2
59
Strength to Weight: Bending, points 10
48
Thermal Diffusivity, mm2/s 23
2.9
Thermal Shock Resistance, points 9.1
67

Alloy Composition

Aluminum (Al), % 0 to 0.0050
5.5 to 6.5
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 78 to 82
0
Hydrogen (H), % 0
0 to 0.012
Iron (Fe), % 0 to 0.4
0 to 0.25
Lead (Pb), % 2.0 to 3.0
0
Nickel (Ni), % 0 to 0.8
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 4.0 to 6.0
0
Titanium (Ti), % 0
88.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 10 to 16
0
Residuals, % 0 to 0.7
0