MakeItFrom.com
Menu (ESC)

C84200 Brass vs. S35125 Stainless Steel

C84200 brass belongs to the copper alloys classification, while S35125 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C84200 brass and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 15
39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 250
540
Tensile Strength: Yield (Proof), MPa 120
230

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 150
1100
Melting Completion (Liquidus), °C 990
1430
Melting Onset (Solidus), °C 840
1380
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 72
12
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 17
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
36
Density, g/cm3 8.5
8.1
Embodied Carbon, kg CO2/kg material 3.1
6.4
Embodied Energy, MJ/kg 51
89
Embodied Water, L/kg 350
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
170
Resilience: Unit (Modulus of Resilience), kJ/m3 72
140
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.2
19
Strength to Weight: Bending, points 10
18
Thermal Diffusivity, mm2/s 23
3.1
Thermal Shock Resistance, points 9.1
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.4
36.2 to 45.8
Lead (Pb), % 2.0 to 3.0
0
Manganese (Mn), % 0
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.8
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 10 to 16
0
Residuals, % 0 to 0.7
0