MakeItFrom.com
Menu (ESC)

C84500 Brass vs. ACI-ASTM CF16Fa Steel

C84500 brass belongs to the copper alloys classification, while ACI-ASTM CF16Fa steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is ACI-ASTM CF16Fa steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
160
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 28
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
77
Tensile Strength: Ultimate (UTS), MPa 240
540
Tensile Strength: Yield (Proof), MPa 97
230

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 150
980
Melting Completion (Liquidus), °C 980
1420
Melting Onset (Solidus), °C 840
1370
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 72
16
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
17
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.3
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 340
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
120
Resilience: Unit (Modulus of Resilience), kJ/m3 45
140
Stiffness to Weight: Axial, points 6.6
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7
19
Strength to Weight: Bending, points 9.8
19
Thermal Diffusivity, mm2/s 23
4.2
Thermal Shock Resistance, points 8.6
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 77 to 79
0
Iron (Fe), % 0 to 0.4
62.1 to 72.4
Lead (Pb), % 6.0 to 7.5
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.4 to 0.8
Nickel (Ni), % 0 to 1.0
9.0 to 12
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 2.0
Sulfur (S), % 0 to 0.080
0.2 to 0.4
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 10 to 14
0
Residuals, % 0 to 0.7
0