MakeItFrom.com
Menu (ESC)

C84500 Brass vs. ASTM A372 Grade M Steel

C84500 brass belongs to the copper alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
240 to 280
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 28
18 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 240
810 to 910
Tensile Strength: Yield (Proof), MPa 97
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 150
450
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 840
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 72
46
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 28
5.0
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.9
2.0
Embodied Energy, MJ/kg 47
27
Embodied Water, L/kg 340
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
160
Resilience: Unit (Modulus of Resilience), kJ/m3 45
1140 to 1580
Stiffness to Weight: Axial, points 6.6
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.7
29 to 32
Strength to Weight: Bending, points 9.8
24 to 27
Thermal Diffusivity, mm2/s 23
12
Thermal Shock Resistance, points 8.6
24 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 77 to 79
0
Iron (Fe), % 0 to 0.4
92.5 to 95.1
Lead (Pb), % 6.0 to 7.5
0
Manganese (Mn), % 0
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 1.0
2.8 to 3.9
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 0.0050
0 to 0.3
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 2.0 to 4.0
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 10 to 14
0
Residuals, % 0 to 0.7
0