MakeItFrom.com
Menu (ESC)

C84500 Brass vs. ASTM Grade HK Steel

C84500 brass belongs to the copper alloys classification, while ASTM grade HK steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is ASTM grade HK steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
150
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 28
11
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 39
79
Tensile Strength: Ultimate (UTS), MPa 240
500
Tensile Strength: Yield (Proof), MPa 97
270

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 150
1100
Melting Completion (Liquidus), °C 980
1400
Melting Onset (Solidus), °C 840
1350
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 72
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
25
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
4.4
Embodied Energy, MJ/kg 47
63
Embodied Water, L/kg 340
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
48
Resilience: Unit (Modulus of Resilience), kJ/m3 45
190
Stiffness to Weight: Axial, points 6.6
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7
18
Strength to Weight: Bending, points 9.8
18
Thermal Diffusivity, mm2/s 23
3.9
Thermal Shock Resistance, points 8.6
11

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0
24 to 28
Copper (Cu), % 77 to 79
0
Iron (Fe), % 0 to 0.4
44.8 to 57.8
Lead (Pb), % 6.0 to 7.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
18 to 22
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 2.0
Sulfur (S), % 0 to 0.080
0 to 0.040
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 10 to 14
0
Residuals, % 0 to 0.7
0