MakeItFrom.com
Menu (ESC)

C84500 Brass vs. EN 1.0303 Steel

C84500 brass belongs to the copper alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
84 to 120
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 28
12 to 25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 240
290 to 410
Tensile Strength: Yield (Proof), MPa 97
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 150
400
Melting Completion (Liquidus), °C 980
1470
Melting Onset (Solidus), °C 840
1430
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 72
53
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 17
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 47
18
Embodied Water, L/kg 340
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 45
110 to 270
Stiffness to Weight: Axial, points 6.6
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.7
10 to 15
Strength to Weight: Bending, points 9.8
12 to 16
Thermal Diffusivity, mm2/s 23
14
Thermal Shock Resistance, points 8.6
9.2 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.020 to 0.060
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.020 to 0.060
Copper (Cu), % 77 to 79
0
Iron (Fe), % 0 to 0.4
99.335 to 99.71
Lead (Pb), % 6.0 to 7.5
0
Manganese (Mn), % 0
0.25 to 0.4
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 0.1
Sulfur (S), % 0 to 0.080
0 to 0.025
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 10 to 14
0
Residuals, % 0 to 0.7
0