MakeItFrom.com
Menu (ESC)

C84500 Brass vs. EN 1.4460 Stainless Steel

C84500 brass belongs to the copper alloys classification, while EN 1.4460 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is EN 1.4460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
220
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 28
21
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 39
80
Tensile Strength: Ultimate (UTS), MPa 240
750
Tensile Strength: Yield (Proof), MPa 97
510

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 150
1100
Melting Completion (Liquidus), °C 980
1430
Melting Onset (Solidus), °C 840
1390
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 72
15
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
18
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.9
3.4
Embodied Energy, MJ/kg 47
48
Embodied Water, L/kg 340
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
140
Resilience: Unit (Modulus of Resilience), kJ/m3 45
640
Stiffness to Weight: Axial, points 6.6
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7
27
Strength to Weight: Bending, points 9.8
24
Thermal Diffusivity, mm2/s 23
4.0
Thermal Shock Resistance, points 8.6
20

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 77 to 79
0
Iron (Fe), % 0 to 0.4
60.2 to 69.2
Lead (Pb), % 6.0 to 7.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.3 to 2.0
Nickel (Ni), % 0 to 1.0
4.5 to 6.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 10 to 14
0
Residuals, % 0 to 0.7
0