MakeItFrom.com
Menu (ESC)

C84500 Brass vs. EN 1.4568 Stainless Steel

C84500 brass belongs to the copper alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 28
2.3 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
76
Tensile Strength: Ultimate (UTS), MPa 240
830 to 1620
Tensile Strength: Yield (Proof), MPa 97
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 150
890
Melting Completion (Liquidus), °C 980
1420
Melting Onset (Solidus), °C 840
1380
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 72
16
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 47
40
Embodied Water, L/kg 340
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 45
290 to 5710
Stiffness to Weight: Axial, points 6.6
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7
30 to 58
Strength to Weight: Bending, points 9.8
25 to 40
Thermal Diffusivity, mm2/s 23
4.3
Thermal Shock Resistance, points 8.6
23 to 46

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.7 to 1.5
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 77 to 79
0
Iron (Fe), % 0 to 0.4
70.9 to 76.8
Lead (Pb), % 6.0 to 7.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
6.5 to 7.8
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.7
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 10 to 14
0
Residuals, % 0 to 0.7
0