MakeItFrom.com
Menu (ESC)

C84500 Brass vs. EN 2.4878 Nickel

C84500 brass belongs to the copper alloys classification, while EN 2.4878 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is EN 2.4878 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 28
13 to 17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 39
78
Tensile Strength: Ultimate (UTS), MPa 240
1210 to 1250
Tensile Strength: Yield (Proof), MPa 97
740 to 780

Thermal Properties

Latent Heat of Fusion, J/g 180
330
Maximum Temperature: Mechanical, °C 150
1030
Melting Completion (Liquidus), °C 980
1370
Melting Onset (Solidus), °C 840
1320
Specific Heat Capacity, J/kg-K 360
460
Thermal Conductivity, W/m-K 72
11
Thermal Expansion, µm/m-K 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 28
80
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 2.9
10
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 340
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
150 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 45
1370 to 1540
Stiffness to Weight: Axial, points 6.6
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.7
41 to 42
Strength to Weight: Bending, points 9.8
31
Thermal Diffusivity, mm2/s 23
2.8
Thermal Shock Resistance, points 8.6
37 to 39

Alloy Composition

Aluminum (Al), % 0 to 0.0050
1.2 to 1.6
Antimony (Sb), % 0 to 0.25
0
Boron (B), % 0
0.010 to 0.015
Carbon (C), % 0
0.030 to 0.070
Chromium (Cr), % 0
23 to 25
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 77 to 79
0 to 0.2
Iron (Fe), % 0 to 0.4
0 to 1.0
Lead (Pb), % 6.0 to 7.5
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 1.0
43.6 to 52.2
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 0.020
0 to 0.010
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.0070
Tantalum (Ta), % 0
0 to 0.050
Tin (Sn), % 2.0 to 4.0
0
Titanium (Ti), % 0
2.8 to 3.2
Zinc (Zn), % 10 to 14
0
Zirconium (Zr), % 0
0.030 to 0.070
Residuals, % 0 to 0.7
0