MakeItFrom.com
Menu (ESC)

C84500 Brass vs. EN AC-48000 Aluminum

C84500 brass belongs to the copper alloys classification, while EN AC-48000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C84500 brass and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 100
73
Elongation at Break, % 28
1.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 39
28
Tensile Strength: Ultimate (UTS), MPa 240
220 to 310
Tensile Strength: Yield (Proof), MPa 97
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 180
570
Maximum Temperature: Mechanical, °C 150
190
Melting Completion (Liquidus), °C 980
600
Melting Onset (Solidus), °C 840
560
Specific Heat Capacity, J/kg-K 360
890
Thermal Conductivity, W/m-K 72
130
Thermal Expansion, µm/m-K 19
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
33
Electrical Conductivity: Equal Weight (Specific), % IACS 17
110

Otherwise Unclassified Properties

Base Metal Price, % relative 28
10
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 2.9
7.9
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 340
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 45
300 to 510
Stiffness to Weight: Axial, points 6.6
15
Stiffness to Weight: Bending, points 18
53
Strength to Weight: Axial, points 7.7
23 to 33
Strength to Weight: Bending, points 9.8
31 to 39
Thermal Diffusivity, mm2/s 23
54
Thermal Shock Resistance, points 8.6
10 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
80.4 to 87.2
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 77 to 79
0.8 to 1.5
Iron (Fe), % 0 to 0.4
0 to 0.7
Lead (Pb), % 6.0 to 7.5
0
Magnesium (Mg), % 0
0.8 to 1.5
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0 to 1.0
0.7 to 1.3
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.0050
10.5 to 13.5
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 2.0 to 4.0
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 10 to 14
0 to 0.35
Residuals, % 0
0 to 0.15