MakeItFrom.com
Menu (ESC)

C84500 Brass vs. Grade 24 Titanium

C84500 brass belongs to the copper alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C84500 brass and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 28
11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 39
40
Tensile Strength: Ultimate (UTS), MPa 240
1010
Tensile Strength: Yield (Proof), MPa 97
940

Thermal Properties

Latent Heat of Fusion, J/g 180
410
Maximum Temperature: Mechanical, °C 150
340
Melting Completion (Liquidus), °C 980
1610
Melting Onset (Solidus), °C 840
1560
Specific Heat Capacity, J/kg-K 360
560
Thermal Conductivity, W/m-K 72
7.1
Thermal Expansion, µm/m-K 19
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 2.9
43
Embodied Energy, MJ/kg 47
710
Embodied Water, L/kg 340
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
110
Resilience: Unit (Modulus of Resilience), kJ/m3 45
4160
Stiffness to Weight: Axial, points 6.6
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 7.7
63
Strength to Weight: Bending, points 9.8
50
Thermal Diffusivity, mm2/s 23
2.9
Thermal Shock Resistance, points 8.6
72

Alloy Composition

Aluminum (Al), % 0 to 0.0050
5.5 to 6.8
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 77 to 79
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.4
Lead (Pb), % 6.0 to 7.5
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 2.0 to 4.0
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 10 to 14
0
Residuals, % 0
0 to 0.4